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Abstract 

This paper presents Quasi Newton’s (QN) approach for solving fuzzy nonlinear equations. The method 

considers an approximation of the Jacobian matrix which is updated as the iteration progresses. Numerical 

illustrations are carried, and the results shows that the proposed method is very encouraging. 
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1. Introduction 

Systems of nonlinear equations of the form  

 

   𝐹(𝑥) = 0                         (1) 

 

where 𝐹: 𝑅𝑛 → 𝑅𝑛 is a real-valued function of a vector, is widely used in areas such as engineering, 

mathematics, computer science and social science. The concept of fuzzy numbers and arithmetic 

operations involving these numbers were due to Zadeh (1965) and the famous application of fuzzy 

number arithmetic is nonlinear equations whose parametric form are all or partially represented by 

fuzzy numbers (Abbasbandy and Asady, 2004; Kajani et al, 2005; Waziri and Moyi, 2016). Also, 

existing literature that uses standard analytic technique like Buckley and Qu (1990) are not suitable 

for solving systems such as 
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(1) 𝑎𝑥5 + 𝑏𝑦4 + 𝑐𝑥3 + 𝑑𝑦3 + 𝑒𝑥2𝑦2 + 𝑓 = 𝑔 

(2) 𝑥 − 𝑐𝑜𝑠𝑦 = 𝑝 

 

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔 𝑎𝑛𝑑 𝑝 are fuzzy numbers. Here we consider these equations, in general, as 

 

𝐹(𝑥) = 𝑐 
 

To handle some of the pitfalls identified in (Buckley and Qu, 1990), many numerical methods have 

been introduced (Abbasbandy and Asady 2004; Waziri and Majid, 2012; Sulaiman et al, 2018) for 

example, Abbasbandy and Asady (2004) used Newton’s method for solving fuzzy nonlinear 

equations. The method requires computing and storing the Jacobian matrix in every iteration. This 

leads to modification of Newton’s method in order to reduce computation burden. Amirah et al 

(2010), apply Broyden’s method for solving fuzzy nonlinear equations. Mustafa Mamat et al 

(2014), employ trapezoidal Broyden method for solving systems of nonlinear equations. Waziri and 

Moyi (2016), used chord method to solve dual fuzzy nonlinear equations. Kelley (1995) used 

Shamanskii-like method to solve nonlinear equations at singular point and Sulaiman et al (2018); 

Sulaiman et al (2018) further apply the Shamanskii’s approach for fuzzy nonlinear problems. These 

methods do not evaluate the Jacobian at each iteration. Sulaiman et al (2018), employ the Conjugate 

Gradient method to solve fuzzy nonlinear equations. In this paper, we consider a Broyden’s-like 

method for solving systems of fuzzy nonlinear equations. This method can best be described as 

belonging to the family of Quasi-Newton’s method. The anticipation has been to reduce the 

computational burden of the Jacobian matrix in every iteration.  

The paper is structured as follows. In section 2, we present some basic definition and 

fundamental results of fuzzy numbers. In section 3, we present the Broyden’s-like method for 

solving nonlinear equation. In section 4, we present a Broyden’s-like method for solving fuzzy 

nonlinear equation. In section 5, we illustrate our method by some numerical examples. 

Conclusions are given in the last section. 

2. Preliminaries 

This section presents some basic definition of fuzzy numbers. 

Definition 1: [18] 

A fuzzy number is a set like 𝑢:𝑅 → 𝐼 = [0,1] which satisfy the following conditions, 

 

(1) 𝑢 is upper semicontinuous, 

(2) 𝑢(𝑥) = 0 outside some interval [𝑐, 𝑑], 
(3)  There are real numbers 𝑎, 𝑏 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑐 ≤ 𝑎 ≤ 𝑏 ≤ 𝑑 and 

(3.1) 𝑢(𝑥) is monotonic increasing on [𝑐, 𝑎] 
(3.2) 𝑢(𝑥) is monotonic decreasing on [𝑏, 𝑑] 
(3.3) 𝑢(𝑥) = 1, 𝑎 ≤ 𝑥 ≤ 𝑏.  

 

The set of all these fuzzy numbers is denoted by 𝐸. An equivalent parametric is also given 

in (Goetschel and Voxman, 1986)  as follows. 
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Definition 2. (Dubois and Prade, 1980) 

 A fuzzy number 𝑢  in parametric form is a pair (𝑢, 𝑢) of function 𝑢(𝑟), 𝑢(𝑟), 0 ≤ 𝑟 ≤ 1,  which 

satisfies the following requirements: 

(1) 𝑢(𝑟) is bounded monotonic increasing left continuous function, 

(2) 𝑢(𝑟) is bounded monotonic decreasing left continuous function, 

(3) 𝑢(𝑟) < 𝑢(𝑟), 0 ≤ 𝑟 ≤ 1. 

A crisp number 𝛼  is simply represented by 𝑢(𝑟) =  𝑢(𝑟) =  𝛼, 0 ≤ 𝑟 ≤ 1  (Fang, 2002; 

Peeva, 1992). A popular fuzzy number is the trapezoidal fuzzy number 𝑢 = (𝑥0, 𝑦0, 𝛼, 𝛽)  with 

interval defuzzifier [𝑥0, 𝑦0 ] and left fuzziness 𝛼  and right fuzziness 𝛽  where the membership 

function is  

𝑢(𝑥) =

{
 
 

 
 
1

𝛼
(𝑥 − 𝑥0 + 𝛼), 𝑥0 − 𝛼 ≤ 𝑥 ≤ 𝑥0 ,

1                                           𝑥 ∈ [𝑥0, 𝑦0] 
1

𝛽
(𝑦0 − 𝑥 + 𝛽),          𝑦0 ≤ 𝑥 ≤ 𝑦0 + 𝛽,

0                                              otherwise.

 

and its parametric form is  

𝑢(𝑟) = 𝑥0 − 𝛼 + 𝛼𝑟,   𝑢(𝑟) = 𝑦0 + 𝛽 − 𝛽𝑟. 

Let 𝑇𝐹(𝑅) be the set of all triangular fuzzy numbers. The addition and scalar multiplication of 

fuzzy numbers are defined by the extension principle and can be equivalently represented as 

follows. 

For arbitrary 𝑢 = (𝑢, 𝑢), 𝑣 = (𝑣, 𝑣)𝑎𝑛𝑑 𝑘 > 0 we define 𝑢 + 𝑣 and multiplication by real number 

𝑘 > 0 as 

(𝑢 + 𝑣)(𝑟) =  𝑢(𝑟) + 𝑣(𝑟),   (𝑢 + 𝑣)(𝑟) =  𝑢(𝑟) + 𝑣(𝑟), 

(𝑘𝑢)(𝑟) = 𝑘𝑢(𝑟), (𝑘𝑢)(𝑟) = 𝑘𝑢(𝑟). 

3. Broyden’s Method 

Broyden’s method belongs to a class of methods known as Quasi-Newton methods that are 

designed to improve Newton’s method in terms of efficiency (Broyden, 1965). The method tries to 

approximate the Jacobian 𝐽′(𝑥(𝑘)) or its inverse 𝐽′(𝑥(𝑘))−1 by 𝐻𝑘 = 𝐵𝑘
−1, which is updated as the 

nonlinear iteration progresses. The update is done via secant approximation to the derivative 

Dennis, 1983).  Given an initial guess  𝑥0 the Broyden method generate a sequence of point {𝑥𝑘} in 

the form 

 

         𝑥𝑘+1 = 𝑥𝑘 − 𝐵𝑘
−1𝐹(𝑥𝑘)             𝑘 = 0,1,2…                                    (2) 

 



4 Umar A. Omesa et al./ International Journal of Quantitative Research  and Modeling, Vol 1, No 1, pp. 1-10, 2020 

 

where 𝐵𝑘 is an approximation to the Jacobian (matrix of the partial derivative of 𝑓(𝑘) evaluated at  

𝑥(𝑘)). Choose 𝐵𝑘+1 in such a way that  

 

𝐵𝑘+1𝑑𝑘 = 𝑦𝑘                   (3) 

 

where 𝑦𝑘 = 𝐹(𝑥(𝑘+1)) − 𝐹(𝑥(𝑘))  and 𝑑𝑘 = 𝑥
(𝑘+1) − 𝑥(𝑘) . The above equation is referred to as 

Quasi-Newton condition(Broyden, 1965; Kelley,1995). However, for single rank methods, 𝐵𝑘+1 is 

chosen satisfying (3) such that  

 

        𝐵𝑘+1 = 𝐵𝑘 −
𝐵𝑘(𝑦𝑘)+𝐵𝑘𝐹(𝑥𝑘))𝑑𝑘

𝑇

𝑑𝑘
𝑇(𝑦𝑘)

                                        (4) 

where 𝑑𝑘
𝑇(𝑦𝑘) ≠ 0. If 𝐴(𝑥𝑘) = 𝐴𝑘 = 𝐵𝑘

−1), then 

 

𝐴𝑘+1 = 𝐴𝑘 − (𝑦𝑘 − 𝐹(𝑥𝑘))𝑑𝑘
𝑇𝐴𝑘/𝑑𝑘

𝑇𝐹(𝑥𝑘)                                  (5) 

 

In this study, we use the approximate   𝐽(𝑥0, 𝑥0, 𝑟) =  𝐵0(𝑟) and 𝐵0
−1 to solve (1) with initial guess 

chosen close to the exact solution and we the update for  𝐵𝑘+1 as 

 

  𝐵𝑘+1 = 𝐵𝑘 + 
(𝑑1−𝐵𝑘𝐷1)𝑑𝑘

𝑑𝑘,𝐷1
                        (6) 

where 𝑑1 = (𝑥 − 𝑥0), 𝐷1 = (𝐹 − 𝐹0), and 𝑑𝑘 = (𝑑1
𝑇 , 𝐵𝑘). 

 

We now state the convergence theorems of the Broyden’s method. 

  

Theorem 1 (Kelley,1995) 

Let the standard assumptions hold. Then there are 𝛿 and 𝛿𝐵 such that if 𝑥0 ∈ 𝐵(𝛿) and ‖𝐸0‖2 < 𝛿𝐵, 

the Broyden sequence for the data (𝐹, 𝑥0, 𝐵0) exist and 𝑥𝑘  →  𝑥
∗ q-superlinearly. 

  

Theorem 2 (Kelley,1995) 

Let the standard assumptions hold and  𝑟 ∈ (0,1)  be given. Then there are 𝛿 and 𝛿𝐵 such that if 

𝑥0 ∈ 𝐵(𝛿) and ‖𝐸0‖2 < 𝛿𝐵  the Broyden sequence for the data (𝐹, 𝑥0 , 𝐵0) exist and 𝑥𝑘  →  𝑥
∗ q-

linearly with q-factor at most 𝑟. 
 
Refer to (Kelley,1995)) for the theoretical proof of the above theorems. 

4. Iterative approach for solving fuzzy nonlinear equations 

In this section, we intend to obtain a solution for fuzzy nonlinear equation 

𝐹(𝑥) = 0. 
 

whose parametric form is as follows: 

 

𝐹(𝑥, 𝑥; 𝑟) = 0 
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𝐹(𝑥, 𝑥; 𝑟) = 0. ∀𝑟 ∈ [0,1] .                                               (7) 

 

Assume that 𝛼 = (𝛼, 𝛼) is the solution to the nonlinear system (7), i.e. 

 

𝐹(𝛼, 𝛼; 𝑟) = 0, 

𝐹(𝛼, 𝛼; 𝑟) = 0, ∀𝑟 ∈ [0,1] 

 

Now, if 𝑥0 = (𝑥0, 𝑥0) is an approximate solution for this nonlinear system, then ∀𝑟 ∈ [0,1], there 

are ℎ(𝑟), 𝑘(𝑟) such that  

𝛼(𝑟) =  𝑥0(𝑟) +  ℎ(𝑟), 
𝛼(𝑟) =  𝑥0(𝑟) +  𝑘(𝑟). 

 

By applying the Taylor series of 𝐹, 𝐹 about (𝑥0, 𝑥0), then ∀𝑟 ∈ [0,1],  
 

𝐹(𝛼,𝛼; 𝑟) = 𝐹(𝑥0, 𝑥0, 𝑟) + ℎ 𝐹𝑥(𝑥0, 𝑥0, 𝑟) +  𝑔 𝐹𝑥(𝑥0, 𝑥0, 𝑟) + 0(ℎ
2 + ℎ𝑘 + ℎ2) = 0 

 

𝐹(𝛼,𝛼; 𝑟) = 𝐹(𝑥0, 𝑥0, 𝑟) + ℎ 𝐹𝑥(𝑥0, 𝑥0, 𝑟) + 𝑔𝐹𝑥(𝑥0, 𝑥0, 𝑟) + 0(ℎ
2 + ℎ𝑘 + ℎ2) = 0. 

 

However, suppose 𝑥0 and 𝑥0  are near to 𝛼 𝑎𝑛𝑑 𝛼 , respectively, then ℎ(𝑟) 𝑎𝑛𝑑 𝑘(𝑟)  are small 

enough. Let us assume that all needed partial derivatives exist are bounded. Therefore for enough 

small ℎ(𝑟) 𝑎𝑛𝑑 𝑘(𝑟), where ∀𝑟 ∈ [0,1], we have, 

 

𝐹(𝑥0, 𝑥0, 𝑟) + ℎ 𝐹𝑥(𝑥0, 𝑥0, 𝑟) + 𝑔 𝐹𝑥(𝑥0, 𝑥0; 𝑟) = 0 

 

𝐹(𝑥0, 𝑥0, 𝑟) + ℎ 𝐹𝑥(𝑥0, 𝑥0, 𝑟) + 𝑔𝐹𝑥(𝑥0, 𝑥0; 𝑟) =  0. 

 

Hence, ℎ(𝑟) and 𝑘(𝑟)  are unknown quantities that can be obtained by solving the following 

equations, ∀𝑟 ∈ [0,1], 
 

𝐽(𝑥0, 𝑥0, 𝑟)  (
ℎ(𝑟)
𝑔(𝑟)

) =  (
−𝐹(𝑥0,𝑥0,𝑟)

−𝐹(𝑥0,𝑥0,𝑟)
)                              (8) 

 where 

𝐽(𝑥0, 𝑥0, 𝑟) = [
𝐹𝑥(𝑥0, 𝑥0, 𝑟) 𝐹𝑥(𝑥0, 𝑥0, 𝑟)

𝐹𝑥(𝑥0, 𝑥0, 𝑟) 𝐹𝑥(𝑥0, 𝑥0, 𝑟)
] 

 

is the Jacobian matrix of the function 𝐹 = (𝐹, 𝐹) evaluated in 𝑥0 = (𝑥0, 𝑥0).  However, 𝐽(𝑥0, 𝑥0, 𝑟)  

in (8) is derived by a derivative estimation 𝐽(𝑥𝑘 , 𝑥𝑘 , 𝐹(𝑥𝑘), 𝑟) for 𝑘 = 0,1,2… and for all 𝑟 ∈ [0,1] 
 

Hence, the next approximations for 𝑥(𝑟)𝑎𝑛𝑑 𝑥(𝑟) are as follows 

𝑥1(𝑟) =  𝑥0(𝑟) + ℎ(𝑟), 
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𝑥1(𝑟) =  𝑥0(𝑟) + 𝑘(𝑟), 
for all 𝑟 ∈ [0,1]. 
 

We can obtain approximated solution, 𝑟 ∈ [0,1], by using the recursive scheme 

 

               𝑥𝑛+1(𝑟) =  𝑥𝑛(𝑟) + ℎ𝑛(𝑟), 
     𝑥𝑛+1(𝑟) =  𝑥𝑛(𝑟) + 𝑘𝑛(𝑟),                                          (9) 

 

when 𝑛 = 1,2, … Analogous to (5) 

 

𝐽(𝑥𝑛 , 𝑥𝑛, 𝑟)  (
ℎ(𝑟)
𝑔(𝑟)

) =  (
−𝐹(𝑥0,𝑥0,𝑟)

−𝐹(𝑥0,𝑥0,𝑟)
) 

 

Now, if  𝐽(𝑥𝑛, 𝑥𝑛, 𝑟)  is nonsingular, then from (8) we obtain the recursive scheme of Newton’s 

method as follows, 

 

[
𝑥𝑛+1(𝑟)

𝑥𝑛+1(𝑟)
] =  [

𝑥𝑛(𝑟)

𝑥𝑛(𝑟)
] − 𝐽(𝑥𝑛, 𝑥𝑛, 𝑟)

−1 [
𝐹(𝑥𝑛 , 𝑥𝑛, 𝑟)

𝐹(𝑥𝑛 , 𝑥𝑛, 𝑟)
] 

 

Now, we present the algorithm for our proposed approach (Newton-Broyden’s Method) as follows: 

 

Algorithm 1:  Newton-Broyden’s Method (NBM) 

 

Step 1. Transform the fuzzy nonlinear equations into parametric form 

Step 2. Determine the initial guess 𝑥0 by solving the parametric equations for 𝑟 = 0 and  𝑟 = 1. For 

  𝑘 = 0,1,2… 
Step 3.  Compute the initial Jacobian matrix 

𝐽(𝑥0, 𝑥0, 𝑟) =  𝐵0(𝑟) 

Step 4. Compute   𝐵0(𝑟)𝑠𝑘  =  −𝐹(𝑥𝑘)   
Step 5. Compute 𝐵1(𝑟) =  𝐵0(𝑟)

−1  

Step 6. Compute the update (NBM) by (6) 

Step 7. Repeat step 3 to step 6 and continue with the next k until 𝜖 ≤  10−4 are satisfied. 
. 

5. Numerical Results 

In this section, two examples where considered to illustrate the performance of the 

proposed method for solving fuzzy nonlinear equation. Also, the solutions were plotted in Figure 1 

and Figure 2 respectively. The considered benchmark problems are taken from (Waziri and Majid, 

2012). 

 

Example 1. Consider a fuzzy nonlinear equation 
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(6,2,2)𝑥2 + (2,1,1)𝑥 = (2,1,1)𝑥2 + (2,1,1) 
 

Without any loss of generality, let x be positive, then the parametric form of this equation is as 

follows: 

 

(4 + 2𝑟)𝑥2(𝑟) + (1 + 𝑟)𝑥(𝑟) = (1 + 𝑟)𝑥2(𝑟) + (1 + 𝑟) 

(8 − 2𝑟)𝑥
2
(𝑟) + (3 − 𝑟)𝑥 (𝑟) = (3 − 𝑟)𝑥

2
(𝑟) + (3 − 𝑟) 

 

Rewriting yields 

(3 + 𝑟)𝑥2(𝑟) + (1 + 𝑟)𝑥(𝑟) = (1 + 𝑟) 

(5 − 𝑟)𝑥
2
(𝑟) + (3 − 𝑟)𝑥 (𝑟) = (3 − 𝑟) 

 

Let 𝐽(𝑥, 𝑥, 𝑟) =  𝐵0(𝑟) 𝑎𝑛𝑑 𝐽(𝑥, 𝑥, 𝑟)
−1 =  𝐵1(𝑟)

−1 

Then, 

𝐵0(𝑟) =  [
2(3 + 𝑟)𝑥(𝑟) + (1 + 𝑟)(𝑟)              0         

                          0              2(5 − 𝑟)𝑥(𝑟)  + (3 − 𝑟)
] 

and 

𝐵1(𝑟)
−1 = 

[
 
 
 
 

1

2(3 + 𝑟)𝑥(𝑟) + (1 + 𝑟)(𝑟)
                   0           

                    0                
1

2(5 − 𝑟)𝑥(𝑟)  + (3 − 𝑟)]
 
 
 
 

 

 

To obtain the initial guess, we let 𝑟 = 0 and 𝑟 = 1 in the above system, therefore 

𝑟 = 1 

4𝑥2(1) + 2𝑥(1) = 2 

4𝑥
2
(1) + 2𝑥 (1) = 2 

 

𝑟 = 0 

3𝑥2(0) + 𝑥(0) = 1 

5𝑥
2
(0) + 3𝑥 (0) = 3 

 

We have, 𝑥(0) = 0.4343, 𝑥(0) = 0.5307 𝑎𝑛𝑑 𝑥(1) = 𝑥(1) = 0.5000.  Considering, initial guess 

as 𝑥0 = (0.4,0.5), after three iterations, we obtain the solution with the maximum error less than 

10−5. The performance profile is given in Figure 1. 

 



8 Umar A. Omesa et al./ International Journal of Quantitative Research  and Modeling, Vol 1, No 1, pp. 1-10, 2020 

 

 

Figure 1: interactive solution of example 1 

 

 

Example 2. Consider a fuzzy nonlinear equation 

 

(2,1,1)𝑥3 + (3,1,1)𝑥2 + (4,1,1)𝑥 = (4,1,1)𝑥 + (4,2,4) 
Without any loss of generality, we assume that x be positive, then we have the parametric equation 

as follows: 

 

(1 + 𝑟)𝑥3(𝑟) + (2 + 𝑟)𝑥2(𝑟) = (2 + 2𝑟) 

(3 − 𝑟)𝑥
3
(𝑟) + (4 − 𝑟)𝑥

2
 (𝑟) = (8 − 4𝑟) 

 

Let 𝐽(𝑥, 𝑥, 𝑟) =  𝐵0(𝑟) 𝑎𝑛𝑑 𝐽(𝑥, 𝑥, 𝑟)
−1 =  𝐵1(𝑟)

−1. Then, 

 

𝐵0(𝑟) =  [
3(3 + 𝑟)𝑥2(𝑟) + 2(2 + 𝑟)𝑥(𝑟)              0 

  0              3(3 − 𝑟)𝑥2(𝑟)  + 2(4 − 𝑟)𝑥(𝑟)
] 

and 

𝐵1(𝑟)
−1 = 

[
 
 
 
 

1

3(3 + 𝑟)𝑥2(𝑟) + 2(2 + 𝑟)𝑥(𝑟)
                   0

0                
1

3(3 − 𝑟)𝑥2(𝑟)  + 2(4 − 𝑟)𝑥(𝑟) ]
 
 
 
 

 

 

Let 𝑟 = 0 and 𝑟 = 1. We then obtain the initial guess as follows 

𝑥3(0) + 2𝑥2(0) = 2 

3𝑥
3
(0) + 4𝑥

2
 (0) = 8 

and 
2𝑥3(1) + 3𝑥(1) = 4 

2𝑥
3
(1) + 3𝑥 (1) = 4 
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Fig. 1. Iterative solution of example 1 
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using 𝑟 = 0 𝑎𝑛𝑑 𝑟 = 1, to solve the above system, we obtain the initial guess 𝑥0 = (0.9,0.9,0.15) 
we obtain the solution after four iterations with maximum error less than 10−5.  

The performance profile is given in Figure 2. 

 

Figure 2: interactive solution of example 2 

6. Conclusion 

In this paper, we suggested a numerical method for solving fuzzy nonlinear equations instead 

of standard analytical technique. The fuzzy nonlinear equations are written in parametric form and 

then solved via Quasi Newton’s method. Finally, numerical examples were presented to illustrate 

the proposed method and the numerical results shows that our method is very effective. 
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